1.a,Tìm stn n để 9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
b,Tìm số nguyên tố n sao cho n+2 và n+4 đều là số nguyên tố
2.a,Chứng minh với mọi số nguyên x,y nếu:6x+11y chia hết cho 31 thì x+7y chia hết cho 31
b,Chứng minh rằng với mọi STN n khác 0 thì 2n+1 và n(n+1)là 2 số nguyên tố cùng nhau
MNG IUPS EM VS Ạ :))
a) Cho p là số nguyên tố lớn hơn 3, cmr: (p-1)(p+1) chia hết cho 24
b) CMR: 2n+1 và 3n+1 nguyên tố cùng nhau. Biết n là số tự nhiên
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
Câu 1: CMR: Nếu 3 số n, n+k, n+2k là 3 số nguyên tố lớn hơn 3 thì k chia hết cho 6.
Câu 2: Cho p và 8p+1 là 2 số nguyên tố (p>3). CMR: 4p+1 chia hết cho 3.
cho n>2 và n thuộc N,n và 6 là 2 số nguyên tố cùng nhau.Chứng minh rằng n2_1 chia hết cho 24
cmr với n là số nguyên tố >3 thì "(n-1)*(n+1)chia hết cho 24
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N+ 1 LÀ 2 SỐ GUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N-1 ) ( N + 1 ) ( N + 3 ) ( N + 5 ) CHIA HẾT CHO 384
C, VỚI A ,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 ,P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
chứng minh rằng
nếu a nguyên tố cùng nhau với 2
và a nguyên tố cùng nhau với 3 thì n2 -1 chia hết cho 24
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N + 1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N - 1 ) ( N + 1 ) ( N+ 3 ) ( N+ 5 ) CHIA HẾT CHO 384
C, VỚI A,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 , P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI