Câu 1: CMR nếu b là số nguyên tố khác 3 thì số :
A = 3n + 1 + 2009b^2 là hợp số với mọi n thuộc N.
CMR: với n thuộc N* thì phân số 3n-2/4n-3 và 4n+1/6n+1 tối giản
CMR với mọi n thuộc N thì phân số sau là phân số tối giản
a)\(\frac{5n+2}{3n+1}\)
b)\(\frac{2n+5}{3n+7}\)
c)\(\frac{12n+1}{30n+2}\)
CMR 3n+1 và 4n+1 ( n thuộc N) là 2 số nguyên tố cùng nhau
CMR 2n+1 và 3n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
tìm n biết 5n+7 chia hết cho 3n+2
cmr: Nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số
CMR với mọi n thuộc N thì phân số sau là phân số tối giản
a, n + 1 / 2n + 3
b, 2n + 3 / 4n + 8
c, 3n + 2 / 5n + 3
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )