giúp tớ giải bài toán này với : Chứng minh rằng luôn tồn tại ít nhất một số gồm các chự số 0 và 2 chia hết cho một số nguyên tố p với p>2
chứng minh rằng luôn tồn tại nhất một số gồm các chữ số 0 vá 2 chia hết cho một số nguyên tố p với p>2
Chứng minh rằng luôn tồn tại một số gồm các chữ số 0 và 2 chia hết cho số nguyên tố p với p > 2.
Cmr với mọi số nguyên tố p lớn hơn 5 luôn tồn tại số có dạng 111...1 chia hết cho p
cmr luôn tồn tại số tự nhiên được viết bởi 2 chữ số 2 và 0 chia hết cho 2010
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
Chứng minh rằng :
a) Trong 11 số tự nhiên liên tiếp có ít nhất 2 số có hiệu chia hết cho 10
b) Trong 100 số tự nhiên liên tiếp luôn có 2 số có tổng chia hết cho 50
c) A = 30 + 31 + 32 + ...... + 32008 có chữ số tậnCho cùng là 1
d) Cho 20 số nguyên bất kỳ, sao cho tổng 5 số tự nhiên bất kì là 1 số nguyên âm, chứng minh rằng trong 20 số đó có ít nhất 15 số nguyên âm
e) Trong 29 số tự nhiên liên tiếp luôn tồn tại 5 số chia hết cho 7
Các bạn làm ơn giúp mình với !!!!
Cho 4 số nguyên tố lớn hơn 5. Chứng tỏ rằng luôn tồn tại ít nhất hai số có tổng hoặc hiệu chia hết cho 18.
cmr tồn tại 1 số gồm toàn chữ số 0 và 1 chia hết cho 17