\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}\)
=> (x+y)2 = xy .Vì (x+y)2 \(\ge\)0 nên xy\(\ge\)0 => x,y cùng dấu
Vậy không tồn tại x, y trái dấu thoả mãn đẳng thức đã cho
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}\)
=> (x+y)2 = xy .Vì (x+y)2 \(\ge\)0 nên xy\(\ge\)0 => x,y cùng dấu
Vậy không tồn tại x, y trái dấu thoả mãn đẳng thức đã cho
Chứng minh rằng không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức : \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Chứng minh rằng không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức:
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Chứng minh rằng không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Chứng minh không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Chứng minh rằng không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Bài 8 : Chứng minh rằng không tồn tại số hữu tỷ x,y trái dấu và không đối nhau thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Chứng minh rằng ko tồn tại hai số hữu tỉ x và y trái dấu, ko đối nhau thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) (ai làm tích đúng cho)
Chứng minh rằng ko tồn tại hai số hữu tỉ x và y trái dấu, ko đối nhau thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) (ai làm tích đúng cho)
CMR không tồn tại 2 số hữu tỉ x và y trái dấu,ko đối nhau thỏa mãn đẳng thức 1/x+y=1/x+1/y