1,\(F\left(x\right)=ax^2+bx+c\) vs\(G\left(x\right)=cx^2+bx+a\)
CMR:\(F\left(x_0\right)\) thì \(G\left(\frac{1}{x_0}\right)=0\)
2,CMR:\(F\left(x\right)=x^2+4x+10\) không có nghiệm
Cho đa thức f(x) thỏa mãn \(\left(x^2-25\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)
Cmr f(x) có ít nhất 3 nghiệm
Tìm x:
1) \(\text{(x−1):0,16=−9:(1−x)}\)
2) \(\left(\left|x\right|-\dfrac{3}{2}\right)\left(2x^2-10\right)=0\)
3)\(8\sqrt{x}=x^2\left(x\ge0\right)\)
Cho đa thức : f(x)=x(x^19-x^5-x^2018) và g(x)= x^2019-x^2020+9+(x^4+x^2+2)
1)Tính k(x)=f(x)+g(x)
2)Tính giá trị của k(x) tại x bằng \(\left(2-\frac{5}{3}+\frac{7}{6}-\frac{9}{10}+\frac{11}{15}-\frac{13}{21}+\frac{15}{28}-\frac{17}{36}+\frac{19}{45}\right)\cdot\frac{5}{6}\)
3) CMR k(x) không nhận giá trị 2019 với mọi giá trị nguyên x
cho đa thức f(x) xác định với mọi x thỏa mãn:
\(x\cdot f\left(x+2\right)=\left(x^2-9\right)\cdot f\left(x\right)\)
a) tính giá trị của f(5)
b) CMR ;đa thức f(x) có ít nhất 3 nghiệm
Tìm x biết:
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
b) \(\left(3x-\frac{1}{4}\right).\left(x+\frac{1}{2}\right)=0\)
c) \(|x+\frac{1}{5}|-\frac{1}{2}=\frac{9}{10}\)
d) \(\sqrt{0,81}.\left(\sqrt{x}+\sqrt{\frac{16}{49}}\right)=\frac{9}{10}\)
f) \(|\frac{1}{3}.\sqrt{x+1}-\frac{2}{9}|-\frac{1}{6}=\frac{1}{9}\)
Tính tổng : \(f\left(\frac{1}{2005}\right)+f\left(\frac{2}{2005}\right)+.....+\left(\frac{2004}{2005}\right)vớif\left(x\right)=\frac{100^x}{100^x+10}\)
Bài 1:
a) \(\left(x-1,3\right)^2=9\)
b) \(2^{4-x}=32\)
c) \(\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\)
Tìm số nguyên x biết \(\left(x^2-\frac{4}{25}\right)\left(x^2-4\right)\left(x^2-\frac{16}{9}\right)\left(x^2-10\right)< 10\)
1. Cho hàm số: y = f(x) = x2 + 4
a, Tính f \(\left(-\dfrac{1}{2}\right)\); f(5)
b, Tìm x khi f(x) = 10