+) Xét \(\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}-\frac{11}{2}\)
\(=\frac{5a^4-11a^3+12a^2-11a+5}{2a\left(a^2+1\right)}\) ( cái này bạn quy đồng nhá) (1)
Với \(a>0 \Rightarrow\hept{\begin{cases}a^2>0\\2a\left(a^2+1\right)>0\end{cases}}\)
+) Xét pt \(5a^4-11a^3+12a^2-11a+5\) (3)
Chia cả hai vế cho a2>0 (cmt) ta được pt
\(5a^2-11a+12-\frac{11}{a}+\frac{5}{a^2}\)
\(=5\left(a^2+\frac{1}{a^2}\right)-11\left(a+\frac{1}{a}\right)+12\) (2)
Đặt \(a+\frac{1}{a}=x\Rightarrow x^2-2=a^2+\frac{1}{a^2}\)
Thay vào (2) ta dược pt \(5\left(x^2-2\right)-11x+12\)
\(=5x^2-11x+2\)
\(=\left(x-2\right)\left(5x-1\right)\) (cái này là ptích đa thức thành nhân tử)
\(=\left(a-2+\frac{1}{a}\right)\left(5a-1+\frac{5}{a}\right)\)
\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)^2\left[\left(\sqrt{5a}-\frac{\sqrt{5}}{\sqrt{a}}\right)^2+1\right]\ge0\)
\(\Rightarrow pt\left(3\right)\ge0 \left(a>0\right)\)
\(\Leftrightarrow pt\left(1\right)\ge0\left(a>0\right)\)
\(\Leftrightarrow\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}-\frac{11}{2}\ge0\)
\(\Leftrightarrow\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\ge\frac{11}{2}\left(đpcm\right)\)
Lưu ý : Từ dấu +) thứ 2 người ta gọi là cách giải pt đối xứng, các bạn tự tìm hiểu thêm để hk nha !!!
Sửa lại chút, dòng thứ 6 từ dưới lên gồm cả lưu ý , sửa "+1" thành "+9"
do quy đồng sai nên tử số của mình không phải phương trình đối xứng tuy nhiên khi làm lại thì tử số của mình là: \(5a^4-9a^3+10a^2-9a+5\) và cũng dùng dc pt đối xứng bậc chẵn này nên cũng cảm ơn nhé