CMR: \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 28\)
CMR \(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+.....+\(\frac{1}{\sqrt{225}}\)<28
Chứng minh rằng:
a) \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{225}}>28\)
cm : \(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...\(\frac{1}{\sqrt{225}}\)<28
Tính
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{225\sqrt{224}+224\sqrt{225}}\)
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
So sánh
M=\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{224}+\sqrt{225}}\)
N=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{63}}\)
tính :
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(B=\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{10}}+....+\frac{1}{\sqrt{220}+\sqrt{225}}\)
1, CMR: \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\ge\frac{n}{n+1}\)
2, CMR: \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)
3, CMR: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)