Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Văn Hoàng

CMR \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)với \(\hept{\begin{cases}a+b+c\le3\\a,b,c>0\end{cases}}\)

Đinh Đức Hùng
4 tháng 10 2017 lúc 18:07

Ta có :\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\)

Áp dụng bđt Cauchy - Schwarz dạng Engel ta có : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}=1\)( do \(a+b+c\le3\)) (1)

Lại có : \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

nên \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\Leftrightarrow9\ge3\left(ab+bc+ac\right)\Rightarrow ab+bc+ac\le3\)

\(\Rightarrow\frac{2007}{ab+bc+ac}\ge\frac{2007}{3}=669\)(2)

Từ (1) ; (2) \(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\ge670\)

Hay \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)(đpcm)


Các câu hỏi tương tự
Long nguyen van
Xem chi tiết
Wakanda forever
Xem chi tiết
Hoàng Trung Đức
Xem chi tiết
Nguyễn Tùng
Xem chi tiết
you know
Xem chi tiết
Nguyễn Duy Long
Xem chi tiết
linh mai
Xem chi tiết
Dương Anh Tú
Xem chi tiết
Nguyễn Tùng
Xem chi tiết