Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sorano Yuuki

\(CMR:\) \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\) \(< 2\)

Tạ Giang Thùy Loan
2 tháng 6 2017 lúc 18:05

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}\)\(+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)\)\(-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-...-\frac{1}{100!}\)

\(=1+1+\frac{1}{2!}+...+\frac{1}{98!}-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-...-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

Trà My
2 tháng 6 2017 lúc 16:45

\(=1-\frac{1}{2!}+\frac{1}{1!}-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}\)


Các câu hỏi tương tự
Ngọc
Xem chi tiết
Lê Khánh Huyền
Xem chi tiết
Nguyễn Trà My
Xem chi tiết
Shichimiya Satone
Xem chi tiết
Lê Quang Trung
Xem chi tiết
Tran Tuan Anh
Xem chi tiết
Phạm Thị Bích Ngọc
Xem chi tiết
Xem chi tiết
Nguyễn Việt Hoàng
Xem chi tiết