Ta có: \(a^3b-ab^3\)
\(=a^3b-ab-ab^3+ab\)
= \(ab\left(a-1\right)\left(a+1\right)-ab\left(b-1\right)\left(b+1\right)\)
Mà 3 số tự nhiên liên tiếp luôn chia hết cho 6
=> \(ab\left(a-1\right)\left(a+1\right)⋮6,ab\left(b-1\right)\left(b+1\right)⋮6\)
=> \(a^3b-b^3a⋮6\Rightarrowđpcm\)
ta có: ab(a2)-ab(b2) = (ab - ab) (a2-b2) = 0 (a2 - b2)
=> 0 (a2 - b2) = 0
=>a3b - ab3 =0 mà 0:6
=>a3b -ab3 :6
bước đầu là phân tích đa thức thành nhân tử