Cho hàm số y=mx+2m+1(d). Chứng minh rằng với mọi giá trị của m thì học đường thẳng d luôn đi qua 1 điểm cố định. Hãy xác định điểm cố định đó.
Cho đường thẳng (d): y= (m+1)x +2m -3. Chứng minh rằng với mọi m đường thẳng (d) luôn luôn đi qua một điểm cố định. Xác định điểm cố định đó.
Cho đường thẳng d 1 :y = mx + 2m - 1 (với m là tham số) và d 2 : y = x + 1
c) Chứng mình rằng đường thẳng d 1 luôn đi qua một điểm cố định với mọi giá trị của m.
Tìm điểm cố định mà mỗi đường thẳng sau luôn đi qua với mọi giá trị của m:
a) y = (m - 2)x + 3
b) y = (m - 1)x + (2m - 1)
c) y = mx + (m + 2)
Chứng minh rằng đường thăng (d): mx+(2m-1)y+3=0 ( m là tham số ) luôn đi qua một điểm cố định với mọi giá trị của m.
Cho Parabol : y=ax2 (P) và hàm số (d) : y=mx+2m+1
a,CMR (d) luôn đi qua điểm M cố định \(\forall m\)
b,Viết phương trình đường thẳng đi qua M và tiếp xúc với (P)
Cho đường thẳng d: y = mx + 2m + 1 và d’: y = - x (m là tham số)
a)Tìm điểm cố định mà họ đường thẳng d luôn đi qua với mọi m.
b) Tìm m để khoảng cách từ gốc tọa độ O đến d là lớn nhất.
c) Tìm m để d// d’. Với m tìm được hãy vẽ đường thẳng d. Giả sử d cắt trục Ox, Oy lần lượt tại A và B. Tính diện tích tam giác OAB và khoảng cách từ O tới d.
Cho đường thẳng (d) có phương trình y =(2m-1)x-4m+5
a) Tìm m để (d) đi qua điểm M(-3; 1).
b) Chứng minh với mọi m đường thẳng (d) luôn đi qua 1 điểm cố định. Tìm tọa độ điểm đó.