Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
Cmr a, với mọi a,b thuộc N thì A= 2n +11...1:39n chữ số 1
b, với mọi a,b,n thuộc N thì B= (10^n -1)*a+(111...1-n)*b chia hết cho 9(n chữ số 1)
Chứng minh rằng
2n+111...11 ( n chữ số 1) chia hết cho 5
Chứng minh rằng :
a)với mọi n thuộc N thì A=8*n+11..11 chia hết cho 9 (11...111 có n chữ số 1 )
b)Với mọi a,b,n thuộc N thì B=(10n-1)*a+(11..111-n)*b chia hết cho 9 (111..111 có n chữ số 1)
c)888...88-9=n chia hết cho 9 (888..888 có n chữ số 8)
Với n số tự nhiên dương,số dư của A=n+111...11-7 (gồm 2n chữ số 1) khi chia cho 3 là.....
Chứng minh \(\left(2n+111....11\right)\), n chữ số 1 chia hết cho 3
chứng minh rằng 2n + 111...11( n chữ số 1) chia hết cho 3
2. tìm giá trị nhỏ nhất của biểu thức A= 6n-1/ 3n + 2
Cho A =111....11 (2n chữ số 1);B=777...77(n chữ số 7).Tìm số tự nhiên n để A - B là số chính phương.
A = 2n + 111...11(n thừa số 1 )
chứng minh A chia hết cho 3