\(\frac{5n+7}{7n+10}\) là phân số tối giản khi UCNN(5n+7,7n+10)=1
Đặt a=UCLN(5n+7,7n+10)
=>5n+7\(⋮\)a và 7n+10\(⋮\)a
=>7(5n+7)\(⋮\)a và 5(7n+10)\(⋮\)a
=> 5(7n+10)-7(5n+7)\(⋮\)a
=>35n+50-35n-49\(⋮\)a
=>1\(⋮\)a
=> a=1
Vậy \(\frac{5n+7}{7n+10}\) là phân số tối giản
Gọi d là ước chung lớn nhất của 5n+7 và 7n+10
Do đó \(5n+7⋮d\Rightarrow7.\left(5n+7\right)⋮d\)
\(7n+10⋮d\Rightarrow5.\left(7n+10\right)⋮d\)
Do đó \(5\left(7n+10\right)-7.\left(5n+7\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Khi đó \(ƯCLN\left(5n+7;7n+10\right)=1\)
Do vậy phân số \(\frac{5n+7}{7n+10}\)là phân số tối giản