a, \(a>b\) nên \(a-b>0\)
\(c>d\) nên \(c-d>0\)
Do đó : \(a-b+c-d>0\)
\(\Leftrightarrow a+c-\left(b+d\right)>0\)
\(\Leftrightarrow a+c>b+d\)
b, \(a>b>0\)nên \(\frac{a}{b}>1\)
\(c>d>0\)nên \(\frac{c}{d}>1\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}>1\)
\(\Leftrightarrow\frac{ac}{bd}>1\)
\(\Leftrightarrow ac>bd\)