chịu mà dã học đâu mà làm
làm theo lời đi
chịu mà dã học đâu mà làm
làm theo lời đi
CMR : \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+..+\frac{2}{2017^2}< \frac{504}{1009}\)
Giúp mình với , mai mình học rồi
Cho \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)
CMR : \(A< \frac{504}{1009}\)
Nhanh lên nhé !
CMR : A=232+252+272+..+220172<5041009A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+..+\frac{2}{2017^2}< \frac{504}{1009}A=322+522+722+..+201722<1009504
cho \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}.\)Chứng minh rằng :\(A< \frac{504}{1009}\)
Cho A = \(\frac{2}{3^2}\)+ \(\frac{2}{5^2}\)+\(\frac{2}{7^2}\)+...+\(\frac{2}{2019^2}\). CMR : A < \(\frac{504}{1009}\)
a) Cho A= \(\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\) CM: A< \(\frac{504}{1009}\)
b) Cho a+c= 2b và 2bd=c(b+d) (b, d không bằng 0). CM: \(\frac{a}{b}=\frac{c}{d}\)
1) A=\(\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\) CM : A < \(\frac{504}{1009}\)
2) Cho a+c=2b; 2bd=c.(b-d) ( b,d \(\ne\) 0) CM \(\frac{a}{b}=\frac{c}{d}\)
3) Tìm x, y
\(\left(x-\frac{2}{5}\right)^{2018}+|y-2|=0\)
a ) Cho biết : \(x+y+z=2020\)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}\)
Tính M = \(\frac{x+y}{z}=\frac{x+z}{y}=\frac{y+z}{x}\)
b ) Cho \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)
\(CMR:a< \frac{504}{1009}\)
Tính:
a) \(\frac{\left(1+\frac{17}{1}\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right).....\left(1+\frac{17}{19}\right)}{\left(1+\frac{19}{1}\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right).....\left(1+\frac{19}{17}\right)}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}\)
c) \(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}\)
e) \(\frac{\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}\)
2) CMR: \(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{800}}< \frac{1}{3}\)