Ta có A>1
\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
=> 1<A<2 => A không là số tự nhiên
Ta có A>1
\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
=> 1<A<2 => A không là số tự nhiên
CMR: với mọi số tự nhiên \(n\ge2\), tổng :
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không thể là số tự nhiên
CMR: với mọi số tự nhiên \(n\ge2\), tổng:
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không thể là số tự nhiên
BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
cmr các tổng sau không là số nguyên:a A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{n}\left(n\in N,n\ge2\right)\)
Chứng minh rằng : Với mọi số tự nhiên \(n\ge2\)thì tổng :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+......+\frac{n^2-1}{n^2}\)không thể là số nguyên
Chứng minh rằng : Với mọi số tự nhiên \(n\ge2\)thì tổng :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+.....+\frac{n^2-1}{n^2}\)không thể là số nguyên
CMR
\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
không phải là 1 số tự nhiên n thuộc N*
BÀI 1: CMR với mọi số tự nhiên n \(\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{1}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk nha. Ai đúng và nhanh nhất mk hứa sẽ giúp bn tăng 3 điểm hỏi đáp
Liên hệ: https://olm.vn/thanhvien/quynhgiang2k4
Chứng minh rằng: Với mọi số tự nhiên \(n\ge2\) thì tổng:
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+....+\frac{n^2-1}{n^2}\)không thể là số nguyên.