Ta có:3^6.n2^6.n=n.(3^6-2^6)=n.665
Vì 3^6.n-2^6.n chia hết cho 35 và 665 chia hết cho 35 nên n chia hết cho 35
Vậy n chia hết cho 35 ------->đpcm
Ta có:3^6.n2^6.n=n.(3^6-2^6)=n.665
Vì 3^6.n-2^6.n chia hết cho 35 và 665 chia hết cho 35 nên n chia hết cho 35
Vậy n chia hết cho 35 ------->đpcm
CMR : 3^6n - 2^6n chia hết cho 35 ( n thuộc N )
CMR 36n - 26n chia hết cho 35
CMR
a) (5n + 7) x (4n + 6) chia hết cho 2 với mọi n thuộc N
b) (8n + 1) x (6n + 5) chia hết cho 2 với mọi n thuộc N
tìm n thuộc N đó
a, 6n +5 chia hết cho 2n -1
b, 6n +3 chia hết cho 4n + 1
c, 3n +2 chia hết cho 9-4n
tìm n thuộc N đó
a, 6n +5 chia hết cho 2n -1
b, 6n +3 chia hết cho 4n + 1
c, 3n +2 chia hết cho 9-4n
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
Chứng minh rằng: n4 + 6n3 + 11n2 +6n chia hết cho 24 với mọi n thuộc N
cho A= 106n+2+103n+1+1.CMR:
a) A chia hết cho 111 với mọi n thuộc N
b) A chia hết cho 91 với mọi n lẻ
Tìm n thuộc N A:n+13 chia hết cho n-5 B:6n-9 chia hết cho 2n-2