3366+7755-2=(332)33+7754.77-2=A933+(772)27.77-2=A933+B927.77-2
=(...9)+[(...9).77]-2=(..9)+(...3)-2=(...2)-2=(...0).
Tận cùng 0 hoặc 5 thì chia hết cho 5.
Vậy 3366+7755-2 chia hết cho 5.
3366+7755-2=(332)33+7754.77-2=A933+(772)27.77-2=A933+B927.77-2
=(...9)+[(...9).77]-2=(..9)+(...3)-2=(...2)-2=(...0).
Tận cùng 0 hoặc 5 thì chia hết cho 5.
Vậy 3366+7755-2 chia hết cho 5.
1, CMR : 23^401 + 38^202 - 2^433 chia hết cho 5
2, CMR: 9^2014 +3^2013 +2^2012 chia hết cho 10
3, CMR : 3^2013 + 2^2013 chia hết cho 5
Bài 1:
a, A = 15.37 + 63.85 + 372 - 63.33
b, B = 1 + 3 - 5 - 7 + 9 + 11 - 13 - 15 + ... + 2019
c, C = 1.1! + 2.2! + 3.3! + ... + 100.100! - 101! + 101
Bài 2:
Cho M = 32017 - 32016 + 32015 - 32014 + ... + 3 - 1
a, CMR M chia hết cho 2
b, Tìm chữ số tận cùng của 16M
c, Tìm số dư khi chia M cho 5
d, Tìm STN n biết: 36M + 9 = 9n
e, So sánh 12M với 23366
Bài 3:
Cho a, b, c là các chữ số ( a khác 0 ) thỏa mãn a + b + c chia hết cho 7
CMR: Nếu b = c thì abc chia hết cho 7
Bài 4:
Tính tổng các chữ số của P biết:
P = 33...3(2019 chữ số 3) x 33...34(2018 chữ số 3)
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
Cho A =5+5^2+5^3+5^4+...+5^2014+5^2015+5^2016
a) Tính A
b) CMR: A chia hết cho 6
c) CMR: A chia hết cho 31
a/CMR tích của 2 số tự nhiên liên tiếp chia hết cho 2
b/CMR tích của 3 số tự nhiên liên tiếp chia hết cho 6
c/CMR tích của 4 số tự nhiên liên tiếp chia hết cho 24
d/CMR tích của 5 số tự nhiên liên tiếp chia hết cho 120
1)CMR
B= 3+3 ^ 3 + 3^5 +...+ 3^1991 chia hết cho 13
C= 3+ 3^3 + 3^5 +3^7 +... + 3^2n-1 chia hết cho 30
2)Cmr
1.4.+2.4^2 + 2. 4^3+4.4^4+5.4^5+6.4^6 chia hết cho 3
CMR: 1+3+3^2+3^3+...+3^44 chia hết cho 4 và 40
CMR: 2+2^2+2^3+...+2^100 chia hết cho 3 và 5
1)Cho ( 3.a + b) chia hết cho 11.Với a;b thuộc N
CMR (4.a+ 5.b) chia hết cho 11
2)Cho (2.a + 5.b) chia hết cho 3
CMR (5.a + 2.b) chia hết cho 3
Các bạn thử giải xem nhé! Đây là 1 trong những dang bài toán dễ trong chương trinh lớp 6...