Cho \(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{+3^n}\)
\(CMR:A>n-\frac{1}{2}\)
Cho \(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}.\)
Chứng minh : \(A>n-\frac{1}{2}\)
1) Cho 3x-2y/4=2z-4x/3=ay-3z/2.chứng tỏ x/2=y/3=z/4
2) tìm x,y,z biết x+16/9=y-25/16=z+9/25 và (2x^3)-1=15
3) cho a/b=c/d chứng tỏ (a-b/c-d)^2=ab/cd và (a+b/c+d)^3=a^3-b^3/c^3-d^3
4) Cmr:
10^n-18n-1 chia het cho 27
27^8-3^21 chia het cho 26
8^12-2^33-2^30 chia het cho 53
Chứng minh:
27^8 - 3^21 chia hết cho 26
8^12-2^33-2^30 chia hết cho 55
3^n+3 + 3^n+1+2^n+3+2^n+1 chia hết cho 6
3^n+2-2^n-2+3^n- 2^n chia hết cho 10
1.chung to
a)(n+2016^2017).n+2017^2016 chia het cho 2
b)(n-5(n)) chia het cho 9 voi S (n) la tong cac chu so cua n
c)5^10-5^8 chia het cho 12
d)3^28-3^27-3^26 chia het cho 45
CMR
1)\(81^7-27^9-9^{13}\)chia hết cho 45
2)\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
3)\(3^{n+3}+3^{n+1}+2^{n+2}+2^{n+3}\)chia hết cho 6
Bài 1: chứng minh rằng
a) 7^6 + 7^5 - 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 222
c) 81^7 - 27^9 - 9^13 chia hết cho 45
Bài 2: Tìm n thuộc N biết
a) 5^n ( 1+5^2) = 650
b) 32^-n * 16^n = 1024
c) 3^-1 * 3^n + 5 * 3^n-1 = 162
d) 9 * 27^n = 3^5
e) ( 2^3 : 4 ) * 2^n = 4
f) 3^-2 * 3^4 * 3^n = 3^7
CMR: S= 3/4+ 8/9+15/16+...+n^2-1/n^2 ko phải là một số tự nhiên( n >2, n thuộc N)
CMR:
\(\frac{3}{4}+\frac{8}{9}+...+\frac{n^2-1}{n^2}\)không phải số tự nhiên với mọi n thuộc N, n>2