Chứng minh rằng : \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{255}+\frac{1}{256}>5.\)
\(B=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}\cdot\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}=?\)
Tính
a) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{1}{-8}+\frac{1}{9}+\frac{1}{8}+\frac{1}{-7}+\frac{-1}{6}+\frac{-1}{5}\)
b) (-11).36-64.11
c) \(\frac{\frac{1}{3}+\frac{1}{7}+\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}+\frac{2}{13}}.\frac{\frac{3}{4}+\frac{3}{16}+\frac{3}{64}+\frac{3}{256}}{1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}}+\frac{3}{8}\)
Tinh
D= \(\frac{\frac{1}{3}+\frac{1}{17}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{17}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
Trinh bay cach lam nhe
Ko hieu vao DOC THEM
Cho A=\(\frac{\frac{1}{5}+\frac{1}{7}-\frac{1}{13}}{\frac{3}{5}+\frac{3}{7}-\frac{3}{13}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{1}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
a) Rút gọn A
b) tính 75% của A
a) CMR: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{3}{4}\)
b) CMR: \(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
Tính:
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{4}{14}-\frac{2}{13}}\) x \(\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}\) + \(\frac{5}{8}\)
GIÚP MÌNH VỚI. MÌNH CẦN GẤP!
tính giá trị biểu thức
\(A=\frac{-378.132+189.64}{15+18+21+......+45+48}\)
\(B=1,4.\frac{15}{14}-\left(\frac{4}{5}+\frac{2}{5}\right):2\frac{1}{5}-\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{\frac{25}{24}+\frac{15}{180}+\frac{20}{285}}\)
\(C=\frac{7+\frac{7}{12}-\frac{7}{144}+\frac{7}{60}}{5+\frac{6}{12}-\frac{5}{144}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{34}}-\frac{1}{20}\)
CMR
\(\frac{1}{5}< \frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}< \frac{2}{5}\)\(\frac{2}{5}\)