Giải
\(\frac{1}{b}-\frac{1}{b+1}=\frac{b+1-b}{b\left(b+1\right)}=\frac{1}{b\left(b+1\right)}< \frac{1}{b.b}=\frac{1}{b^2}\)
Vậy \(\frac{1}{b^2}>\frac{1}{b}-\frac{1}{b+1}\) ( 1 )
\(\frac{1}{b-1}-\frac{1}{b}=\frac{b-b+1}{b\left(b-1\right)}=\frac{1}{b\left(b-1\right)}>\frac{1}{b.b}=\frac{1}{b^2}\)
Vậy \(\frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\left(đpcm\right)\)