\(\frac{1}{5^2}+\frac{1}{6^2}+......+\frac{1}{2007^2}>\frac{1}{5}\)
Có \(\frac{1}{5^2}>\frac{1}{4.5}\)
\(\frac{1}{6^2}>\frac{1}{5.6}\)
\(........\)
\(\frac{1}{2007^2}=\frac{1}{2006.2007}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+.......+\frac{1}{2007^2}< \frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{2006.2007}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2007}\)
\(=\frac{2003}{8028}>\frac{1}{5}\)