ta có \(n^3\left(n^2-7\right)^2-36n=n\left[\left(n^3-7n\right)^2-36\right]=n\left(n^3-7n+6\right)\left(n^3-7n-6\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+2\right)\left(n-3\right)\)
đây là tích của 7 số tự nhiên liên tiếp, do đó nó chia hết cho 7
Thầy Minh Quang sai rồi nha thầy!
Ở dòng thứ 1:
\(n^3\) (\(n^2\) - 7)\(^2\) - 36\(n\) = \(n\)[ \(n\)\(^2\) (\(n^2\) - 7)\(^2\) -36]
= \(n\)[ (\(n^4\) - 7\(n^2\))\(^2\) -36] chứ không phải n\(^3\)
−7n