Cho x^2=b^2+c^2, y^2=c^2+a^2, z^2=a^2+b^2.
CM: 4(a^2*b^2+b^2*c^2+c^2*c^2)=(x+y+z)*(-x+y+z)*(x-y+z)*(x+y-z)
cm nếu (x+y+z)=x^2+y^2+z^2 thì xy +yz+zx=0
nếu (x^2+y^2+z^2).(a^2+b^2+c^2)=(ã+by+cx)^2 thì a/x=b/y=c/z
a,cho (a/b+c)+(b/c+a)+(c/a+b)=1.cm (a2/b+c)+(b2/c+a)+(c2/a+b)=0
b,cho (x/a)+(y/b)+(z/c)=1va(a/x)+(b/y)+(c/z)=0
cm(x2/a2)+(y2/b2)+(z2/c2)=1
Giải giup giùm em em cần gấp ạ nghĩ mãi mà vẫn không ra
a)CM: 3(a^2+b^2+c^2)>=(a+b+c)^2 với a,b,c bất kỳ
b) Cho x>0,y>0,z>0 và x+y+z=1.CM:(x+1/x)^2+(y+1/y)^2+(z+1/z)^2>=100/3
Xác định giá trị nhỏ nhất của các biểu thức:
a)A=4x^2+9/x với x thay đổi, x>0
b) B= x^2+2y^2+3x-y+6 với x,y thay đổi
CM bất đẳng thức sau: a^2b^2+b^2c^2+c^2a^2>= abc(a+b+c) (a,b,c bất kỳ)
cho a b c và x y z thỏa mãn a+b+c=1(1) a^2+b^2+c^2=1(2), x/a=y/b=z/c(3). Cm xy+yz+xz=0
Cho
\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
CM x=y=z=0
Bài 1:
a) x3+y3+z3 = xy+yz+xz. Cm: x=y=z.
b) (x+y+z)3 = 3(xy+yz+xz). Cm: x=y=z.
Bài 2:
a) Cho a+b+c=0. Cm: (a2+b2+c2)2 = 2(a4+b4+c4).
b) Cho (a2+b2)(x2+y2) = (ax+by)2. Cm: ay = bx (x,y khác 0)
Cho x^2-yz/a=y^2-xz/b=z^2-xy/c. CM: a^2-xy/c=b^2-ca/y=c^2-ab/z
ứng dụng câu x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2)
giải bài toán
cho a+b+c=0. CM a^3+b^3+c^3=3abc