Chứng minh rằng \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\) là một số nguyên
Chứng minh rằng \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\) là một số nguyên
CMR:
\(\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)\) là số nguyên
chứng minh rằng biểu thức sau là một số nguyên
\(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
* Thực hiện phép tính:
a. \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b. \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c. \(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{2-\sqrt{5}}\)
* Tìm x, biết:
a. \(\sqrt{\left(2x+3\right)^2}=8\)
b. \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)
c. \(\sqrt{9x-9}+1=13\)
Chứng minh rằng các biểu thức sau là 1 số nguyên:
a) \(A=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
b) \(B=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
CM: x = \(\sqrt[3]{3+\sqrt{9+\dfrac{125}{7}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{7}}}\) là số nguyên
Bài 1: a) Cho x=\(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\). Chứng minh x có giá trị là một số nguyên.
b) Tính: x= \(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}+2\)
\(\dfrac{2\sqrt{30}}{\sqrt{5}+\sqrt{6}+\sqrt{7}} \)
\(\sqrt{24}+6\sqrt{\dfrac{2}{3}+\dfrac{10}{\sqrt{6}-1}}\)
\(\dfrac{2\sqrt{15}+\sqrt{16}}{\sqrt{84}+\sqrt{6}}\)
\(2\sqrt{40\sqrt{2}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(\dfrac{\left(2+\sqrt{3}\right)^2-1}{\left(\sqrt{3}+1\right)^2}:\dfrac{\left(3+\sqrt{5}\right)^2-4}{\left(\sqrt{5}+1\right)^2}\)
giúp em với ạ