CMR neu x,y,z la 3 so phan biet thi M co gia tri la so ngyen M=x^2/(x-y)(x-z) + y^2/(y-z)(y-x) + z^2/(z-x)(z-y)
Cho biểu thức M=x^4+y^4+z^4-2(x^2)(y^2)-2(x^2)(z^2)-2(y^2)(z^2)
a,phân tích đa thức M thành nhân tử:
b,Chứng minh nếu x,y,z là số đo các cạnh của một tam giác thi M<0
Cho x+y+z=0, CMR: x^4+y^4+z^4=2(x^2.y^2+y^2.z^2+x^2.z^2)
Cho x/(y-z)+y/(z-x)+z/(x-y)=0 cm x/(y-z)^2+y/(z-x)^2+z/(x-y)^2=0
cmr nếu x,y,z khác 0 và x+y+z=0 thì x^4/yz + y^4/xz + z^4/xy = (5/2)(x^2+y^2+z^2)
Cho x,y,z thỏa mãn :{x+y+z=0,x^2+y^2+z^2=14. tính B= x^4+y^4+z^4
cho x,y,z>0 va xyz=1 chung minh rang neu x+y+z>1/x+1/y+1/z thi trong 3 so co it nhat 1 so lon hon 1
cho x,y,z thay đổi thỏa mãn 0< x,y,z<2
cm: 2( x+y+z)-(xy+yz+xz)<4
cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\(cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\)