Ta có : \(n= [5k + 1;5k+2;5k+3;5k+4;5k]\) n có thể là các giá trị trên \((K \in N)\)
(+) Nếu n = 5k => biểu thức trên chia hết cho 5
(+) Nếu n = 5k + 1 thì 4n+1 chia hết cho 5. Vì: 4n+1 = 4.(5k + 1) + 1 = 20k + 4 + 1 = 20k + 5
=> Mà 20k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5
(+) Nếu n= 5k + 2 thì 2n+1 chia hết cho 5. Vì 2n + 1 = 2.(5k + 2) + 1 = 10k + 4 + 1
=> Mà 10k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5
(+) Nếu n = 5k + 3 thì 3n+1 chia hết cho 5. Vì 3n + 1 = 3(5k + 3) + 1 = 15k + 9 + 1
=> Mà 15k + 10 chia hết cho 5 => Biểu thức trên chia hết cho 5
(+) Nếu n = 5k+4 thì n+1 chia hết cho 5. Vì n+1 = 5k + 4 + 1
=> Mà 5k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5
Từ các giả thiết trên
=> n(n+1)(2n+1)(3n+1)(4n+1) chia hết cho 5 với mọi n