Chứng minh rằng:
a, nếu x+y=1 thì \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
b, nếu x,y,z khác -1 thì\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+z+y+1}+\frac{zx+2z+1}{zx+z+x+1}=3\)
c, Cho x,y,z đôi một khác nhau thỏa mãn\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) thì\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
Bài 71. Cho x , y , z khác 0 và x + y + z \(\ne\)0 . Chứng minh rằng :
Nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\) .
Chứng minh rằng nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với x khác y, yz,xz khác 1, x, y, z khác 0 thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z là các số khác 0. Chứng minh rằng:
Nếu \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
Cho x,y,z khác 0: x+y+z khác 0 và
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tìm \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=?\)
Cho x,y,z là các số khác 0. Chứng minh rằng :
Nếu \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) 0 thì \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
Cho x, y, z là các số khác không. CMR:
Nếu \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
Cho x khác 0, y khác 0, z khác 0 và\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
và x = y + z. CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
CHo x khác 0 , y khác 0 và z khác 0 , \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\) = 1 và x = y + z .
CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) = 1