Đây là bất đẳng thức Cauchy Schwarz dạng Engel
Bạn có thể xem chi tiết tại Ứng dụng bất đẳng thức cauchy–schwarz dạng engel trong chứng minh bất đẳng thức - Giáo Án Điện Tử
Chứng minh :
Trước hết ta chứng minh bất đẳng thức Cauchy Schwarz dạng Engel cho 2 số :
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(*)
\(\Leftrightarrow\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\Leftrightarrow\left(x+y\right)\left(a^2y+b^2x\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow a^2xy+b^2x^2+a^2y^2+b^2xy\ge xy\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
\(\Leftrightarrow b^2x^2-2abxy+a^2y^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
Áp dụng chứng minh bđt Cauchy Schwarz dạng Engel cho 3 số :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Dùng Bunhiacopxki cũng hay =))
Áp dụng BĐT Bunhiacopxki ta có:
\(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right].\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)