CM::
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+............+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Chứng tỏ rằng: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Chứng tỏ rằng :\(y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Chứng minh rằng :\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
chứng tỏ rằng :
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Chứng tỏ rằng:
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Chứng minh rằng:
a)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
b)\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}<1\)
CMR:
\(\frac{1}{41}\)+ \(\frac{1}{42}\)+\(\frac{1}{43}\)+...+\(\frac{1}{79}\)+\(\frac{1}{80}\)>\(\frac{7}{12}\)
CMR: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{ }{ }\)7/12