\(1^n+2^n+3^n+4^n\)
\(=\left(4^n+1\right)+\left(2^n+3^n\right)\)
\(=\left(4+1\right)\left(4^{n-1}-4^{n-2}+...-4+1\right)+\left(2+3\right)\left(2^{n-1}-2^{n-2}.3+...-2.3^{n-2}+3^{n-1}\right)\)
\(=5\left(4^{n-1}-4^{n-2}+...-4+1\right)+5\left(2^{n-1}-2^{n-2}.3+...-2.3^{n-2}+3^{n-1}\right)⋮5\)(đpcm)
Vậy \(1^n+2^n+3^n+4^n⋮5\)