T có : 1/a+1/b+1/c>=[(1+1+1)^3]/(a+b+c)=3^3/3=9
=>1/a+1/b+1c>=9.
Dấu "=" xảy ra khi a=b=c=1/3
T có : 1/a+1/b+1/c>=[(1+1+1)^3]/(a+b+c)=3^3/3=9
=>1/a+1/b+1c>=9.
Dấu "=" xảy ra khi a=b=c=1/3
CMR voi a,b,c la cac so duong, ta co (a+b+c)(1/a+1/b+1/c)>=9
chung minh rang voi a,b,c la cac so duong ,ta co (a+b+c)(1/a+1/b+1/c)>=9
c/m voi moi a,b,c>0 ta co
1/a+1/b+1/c> hoac =9/a+b+c
cho a,b,c >0 thoa man a2+b2+c2=5/3 CM 1/a+1/b+1/c<1/abc
cac ban lam on giup minh voi
Cho a,b,c > 0. CM: (a+b+c)(1/a+1/b+1/c)>=9
cmr: (x+y+z)(1/x + 1/y + 1/z) >=9 (voi x,y,z>0)
sau đo tìm GTNN của M= a/(b+c) + b/(c+a) + c/(a+b)
cm voi moi so duong a b c thi
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\left(1+\sqrt{2}+\sqrt{3}\right)\left(\frac{1}{a+\sqrt{2b}+\sqrt{3a}}+\frac{1}{b+\sqrt{2c}+\sqrt{3a}}+\frac{1}{c+\sqrt{2a}+\sqrt{3b}}\right)\)
cho a , b,c>0 cm (a+b+c0*(1/a+1/b+1/c)>=9
cao nhan naoo giup em voi
1.cmr voi a,b,c la cac so duong ta co: (a+b+c)(1/a+1/b+1/c)>hoac =9
2.giai bat phuong trinh (x+3)(x-3),(x-2)^2+3
EM XIN CHAN THANH CAM ON CAC VI CAO NHAN >_<