c) (x+1) + (x+2) + ... + (x+5) = 90
=> 5x + ( 1 + 2 + ... + 5 ) = 90
5x + 15 = 90
5x = 90 - 15
5x = 75
x = 75 : 5
x = 15
d) (x+1) + (x+2) + .... + (x+100) = 20150
=> 100x + ( 1+2+...+100 ) = 20150
100x + 5050 = 20150
100x = 20150 - 5050
100x = 15100
x = 15100 : 100
x = 151
Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90
<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90
<=> 5x + 15 = 90
=> 5x = 75
=> x = 15
c) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)
\(\Leftrightarrow x+1+x+2+x+3+x+4+x+5=90\)
\(\Leftrightarrow5x+\left(1+2+3+4+5\right)=90\)
\(\Leftrightarrow5x+15=90\)
\(\Leftrightarrow5x=75\)
\(\Leftrightarrow x=15\)
d) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+......+\left(x+99\right)+\left(x+100\right)=20150\)
\(\Leftrightarrow x+1+x+2+x+3+......+x+99+x+100=20150\)
\(\Leftrightarrow100x+\left(1+2+3+.....+99+100\right)=20150\)
\(\Leftrightarrow100x+5050=20150\)
\(\Leftrightarrow100x=15100\)
\(\Leftrightarrow x=151\)