từ a^3 + b^3 + c^3 =3abc => a+b+c = 0
=> a+b= -c <=> c^2 = (a+b)^2
tương tự với -b và -a
=> P = ab^2/a^2+b^2-a^2-2ab-b^2 + bc^2/b^2+c^2-b^2-2bc-c^2 + ca^2/c^2 + a^2 - c^2-2ac-a^2
= -a/2 - b/2 - c/2 = -1/2(a+b+c)=0
từ a^3 + b^3 + c^3 =3abc => a+b+c = 0
=> a+b= -c <=> c^2 = (a+b)^2
tương tự với -b và -a
=> P = ab^2/a^2+b^2-a^2-2ab-b^2 + bc^2/b^2+c^2-b^2-2bc-c^2 + ca^2/c^2 + a^2 - c^2-2ac-a^2
= -a/2 - b/2 - c/2 = -1/2(a+b+c)=0
cho 3 số a,b,c khác nhau từng đôi một thỏa mãn a2(b+c)=b2(c+a)=2015
tính giá trị của P=c2(a+b)
Cho a, b, c đôi một khác nhau thỏa mãn: \(a^3+b^3+c^3=3abc\) và \(abc\ne0\)
Tính \(P=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
Cho a,b,c\(\in\)R đôi 1 khác nhau thỏa \(a^3+b^3+c^3=3abc\)và abc khác 0
Tính P=\(\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
CACSBANJ ZẢI NHANH ZÚP
Cho ba số a, b, c đôi một khác nhau và thỏa mãn \(a^2+b=b^2+c=c^2+a\). Tính giá trị biểu thức \(\left(a+b-1\right)\left(b+c-1\right)\left(c+a-1\right)\)
Cho a,b, c khác 0 , thỏa mãn : \(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{a.c}{a+c}\)
Tính \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
cho a,b,c là các số thực khác nhau đôi một và khác 0 thoã mãn:\(a^2-b=b^2-c=c^2-a\)tính gt của P=(a+b)(b+c)(c+a)
a) Cho a,b,c ∈ R thỏa mãn a+b+c = 0 và \(a^2+b^2+c^2\)=1. Tính giá trị của biểu thức S= \(a^2b^2+b^2c^2+c^2a^2\)
b) Cho đa thức bậc hai P(x) thỏa mãn P(1)=1, P(3)=3, P(7)=31. Tính giá trị của P(10)
Cho a2(b+c)=b2(c+a)=2018 với a,b,c đôi một khác nhau và khác 0. Tìm giá trị của biểu thức c2(a+b)
Cho 3 số thực a,b,c đôi một khác nhau thỏa mãn:
\(a^3+3a^2-7a=b^3+3b^2-7b=c^3+3c^2-7c=6.
\) Đặt f(x)=\(x^2-x-6\)
Tính giá trị của A=f(a).f(b).f(c)