Chuyên mục: BĐT Toán học #7
Ai trả lời đúng + chính xác sẽ được 10GP.
Question: Cho a,b,c là các số thực dương. CMR:
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
_Sáng nay kiểm tra Sinh dù chưa học được chữ nào vẫn dành time đăng Quiz -.-
_Thấy bảo Quiz này lấy từ đề Quốc gia, quốc tế gì đó nên tớ treo giải #10GP luôn.
_Khi nào rảnh post đáp án.
#Life_is_an_exciting_business_and_most_exciting_when_it_is_lived_for_others
#GudLuck
Áp dụng bđt cauchy-schwarz ta có
\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{a^2b+ab^2+ac^2+bc^2}=\dfrac{\left(a+b\right)^2}{\left(ab^2+ac^2\right)+\left(a^2b+bc^2\right)}=\dfrac{\left(a+b\right)^2}{a\left(b^2+c^2\right)+b\left(a^2+c^2\right)}\le\dfrac{b^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{b\left(a^2+c^2\right)}\)Chứng minh tương tự:
\(\dfrac{b+c}{bc+a^2}\le\dfrac{c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{c\left(a^2+b^2\right)}\)
\(\dfrac{c+a}{ca+b^2}\le\dfrac{a^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{a\left(b^2+c^2\right)}\)
Cộng vế theo vế của các bđt trên ta được
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{b^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{a\left(b^2+c^2\right)}=\dfrac{b^2+c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2+c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2+a^2}{c\left(a^2+b^2\right)}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)Vậy \(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
bái tran nguyen bao quan làm sư phụ bài khó như vậy mà làm nhanh v:
ghê v~
bạn chuyên toán à Nguyễn Thị Ngọc Thơ