=(2+22)+(23+24)+..........................+(22015+22016)
=1.(1+2)+23.(1+2)+................................+22015.(1+2)
=1.3+23.3+...............................+22015.3
=3.(1+23+..........................+22015)
suy ra chia hết cho 3
Ta có
\(2+2^2+2^3+...2^{2016}=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)
\(2.3+2^3.3+...+2^{2015}.3=3\left(2+2^3+...+2^{2015}\right)\)
=(2+22)+(23+24)+...+(22016+22017)
=2(1+2)+23(1+2)+...+22016(1+2)
=2.3+23.3+...+22016.3
=3(2+23+...+22016) chia hết cho 3
=> 2+2^2+2^3+...+2^2016 chia hết cho 3
Đặt A = 2 + 22 + 23 + ........... + 22016
Tổng A có 2016 số, nhóm 2 số vào 1 nhóm thì vừa hết
Ta có:
A = (2 + 22) + (23 + 24) + ............. + (22015 + 22016)
= 2(1 + 2) + 23(1 + 2) + ............. + 22015(1 + 2)
= (1 + 2)(2 + 23 + ................. + 22015)
= 3(2 + 23 + ................ + 22015) chia hết cho 3
( 2+2^2 ) +.....+ ( 2^2015+2^2016 )
2.(1+2)+.....+2^2015. (1+2)
2.3+.....+2^2015.3
3.(2+...+2^2015) :3