Chứng tỏ \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}=\frac{4949}{19800}\)
chứng tỏ
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 = 4949/19800
Chứng Minh:
1/1*2+1/3*4+1/5*6+...+1/97*98+1/99*100=1/51+1/52+1/53+...+1/99+1/100
Tính
P= 1/1*2*3 + 1/2*3*4 + 1/3*4*5 +........+1/98*99*100
Tính tổng
A=\(1^3+2^3+3^3+...+100^3\)
B=\(2^3+4^3+...+98^3\)
C=\(1^3+3^3+5^3+...+99^3\)
D=\(1^3-2^3+3^3-4^3+...+99^3-100^3\)
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99 Lời giải: Cách 1: B = 1 + (2 + 3 + 4 + ... + 98 + 99). Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là: (2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949 Khi đó B = 1 + 4949 = 4950 Lời bình: Tổng B gồm 99 số hạng, nếu ta chia các số hạng đó thành cặp (mỗi cặp có 2 số hạng thì được 49 cặp và dư 1 số hạng, cặp thứ 49 thì gồm 2 số hạng nào? Số hạng dư là bao nhiêu?), đến đây học sinh sẽ bị vướng mắc. Ta có thể tính tổng B theo cách khác như sau: Cách 2: Các dạng toán nâng cao lớp 7
1/1*2 - 1/2*3 - 1/3*4- ..... -1/98*99=1/100+1/99*100
1/1*2 1/2*3 1/3*4 ..... -1/98*99=1/100 1/99*100
1) Cho B= (1/2)^2+(1/2)^3+(1/2)^4+...+(1/2)^98+(1/2)^99. Chứng tỏ B<1
2) Rút gọn:
A= 1+5+5^2+5^3+...+5^49+5^50
'' giúp mik bài này vs nhak''