Chứng tỏ rằng mọi số tự nhiên M = (2a)(2b)(2c)abc đều chia hết cho 3 , cho 23 và cho 29
Chứng tỏ rằng mọi số tự nhiên M=(2a)(2b)(2c)abc chia het cho 3 ; 23 ; 29
Cho a,b là các số tự nhiên khác 0, biết (4a+b)chia hết cho 3. chứng tỏ (2a+2b) chia hết cho 3
Chứng minh rằng:
a) a13a9 chia hết cho 11
b) (2a)(2b)(2c)abc chia hết cho 3, cho 23, cho 29
1,cho(2a+7b )chia hết cho 3(với ạ ,b thuộc số tự nhiên)chứng minh rằng (4a+2b)chia hết cho 12
2 cho,b thuộc số tự nhiên và( 11a+2b)chia hết cho 12 chứng minh rằng(a+34b) chia hết cho 12
Cho N = abc là số tự nhiên chia hết cho 4, chứng tỏ: 2b + c chia hết cho 4
cho N=abclà số tự nhiên chia hết cho 4 chứng tỏ : 2b+c chia hết cho 4
Cho 3a + 2b chia hết cho 17 ( a , b là số tự nhiên). Chứng tỏ rằng 10a + b chia hết cho 17
Bài 1 : Chứng minh a + 2b chia hết cho 3 khi và chỉ khi b + 2a cũng chia hết cho 3
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta có :
a, ( n + 10 ) ( n + 15 ) chia hết cho 2
b, n^3 + 5n chia hết cho 6
c, ( 3^100 + 19^990 ) chia hết cho 2
d, ( 3^1993 - 2^157 ) không chia hết cho 2