CHỨNG TỎ RẰNG SỐ CÓ DẠNG aaa aaa BAO GIỜ CŨNG CHIA HẾT CHO 7( CHẲNG HẠN : 333 333 CHIA HẾT 11)
1.Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 7.
2. Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 11
Chẳng hạn 333333 chia hết cho 7
Chứng tỏ rằng
a/Số có dạng aaa bao giờ cũng chia hết cho 37
b/Số có dạng aaa aaa bao giờ cũng chia hết cho 7
c/Số có dạng abcabc bao giờ cũng chia hết cho 11
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
chứng tỏ rằng có dạng aaa aaa ( gạch đầu) bao giờ cũng chia hết cho 7 9 chẳng hạn: 333 333 chia het cho 11)
a) Chứng tỏ rằng abcabc là bội của 77
b) chứng tỏ rằng aaa chia hết cho 11
Chứng tỏ rằng:
Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
Tổng của ba số tự nhiên liên tiếp là một số không chia hết cho 4
Số có dạng aaa aaa bao giờ cũng chia hết cho 7 ( chẳng hạng 333 333 chia hết cho 7)
Số có dạng abc abc bao giờ cũng chia hết cho 11 ( chẳng hạng 328 328 chia hết cho 11)
* Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng aaaaaa bao giờ cũng chia hết cho 3.
c) Số có dạng abcabc bao giờ cũng chia hết cho 13 và 11.
d) ( ab+ ba) chia hết 11