chứng tỏ rằng:B=1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 < 1
Bài 1:Chứng tỏ rằng:B=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)\(\dfrac{1}{8^2}\)<1
Bài 2:Chứng tỏ rằng:E=\(\dfrac{3}{4}\)+\(\dfrac{8}{9}\)+\(\dfrac{15}{16}\)+...+\(\dfrac{2499}{2500}\)<1
Bài 3:Chứng tỏ rằng:1<\(\dfrac{2011}{2020^2+1}\)+\(\dfrac{2021}{2020^2+2}\)+\(\dfrac{2021}{2020^3+3}\)+...+\(\dfrac{2021}{2020^3+2020}\)< 2
Chứng tỏ rằng:B=1/22+1/32+1/42+1/52+1/62+1/72+1/82<1
Chứng tỏ rằng:B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)<1
chứng tỏ rằng:B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<1\)
CHỨNG TỎ:3<1+1/2+1/3+1/4+.....+1/63<6
Chứng tỏ rằng : B=1+1/2+1/3+1/4+...+1/63<6
Chứng tỏ rằng:B=1+5+52+53+54+55+56+57+58
Chứng tỏ rằng:B=1+5+52+53+54+55+56+57+58 chia hết cho 31