a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )
=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d
=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d
=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản
a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi
Gọi (n^3+2n ; n^4 +3n^2+1) là d \(\Rightarrow\) n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
\(\Rightarrow\) n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
Do đó : (n^4+3n^2+1)-(n^4+2n^2) chia hết cho d hay n^2+1 chia hết cho d (1 )
\(\Rightarrow\) (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
\(\Rightarrow\) (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) \(\Rightarrow\) (n^2+1)-n^2 chia hết cho d hay 1 chia hết cho d
Do đó : (n^3+2n ; n^4+3n^2+1 ) = 1 hoặc -1 \(\Rightarrow\) \(y=\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tồi giản (Đ.P.C.M)