Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
May Phạm

chứng tỏ ràng tồn tại một bội của 13 gồm toàn chữ số 2

giúp mình với nhé

Lê Song Phương
10 tháng 9 2023 lúc 8:35

 Xét các số \(10^{13},10^{12},10^{11},...,10^1,10^0\). Có tất cả 14 số như thế. Mà một số khi chia cho 13 chỉ có 13 số dư là \(0,1,2,...,12\) nên sẽ tồn tại 2 số \(10^i,10^j\left(0\le i< j\le13\right)\) có cùng số dư khi chia cho 13.

 \(\Rightarrow10^i-10^j⋮13\) 

 \(\Rightarrow10^i\left(10^{j-i}-1\right)⋮13\) 

 \(\Rightarrow10^{j-i}-1⋮13\)

Nếu \(j-i=1\) thì dẫn đến \(9⋮13\), vô lí. Vậy \(j-i\ge2\)

Ta thấy \(10^{j-i}-1=99...9\) (với \(j-i\) chữ số 9).

Từ đó suy ra 999...99 (\(j-i\) chữ số 9) \(⋮13\) 

hay \(9.111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(222...22\) (\(i-j\) chữ số 2) \(⋮13\)

Vậy tồn tại một bội của 13 chỉ gồm toàn các chữ số 2.

 

 

Lê Song Phương
10 tháng 9 2023 lúc 8:39

 Chỗ này mình sửa lại 1 chút là \(10^j-10^i⋮13\) nhé. Mặc dù cái trên về bản chất thì vẫn đúng (vì nếu \(a⋮13\) thì \(-a⋮13\)) nhưng nếu viết như trên thì đôi khi sẽ gây nhầm lẫn cho người đọc.


Các câu hỏi tương tự
Đinh Hoàng Anh
Xem chi tiết
Vui vui
Xem chi tiết
Đặng Thị Thùy Linh
Xem chi tiết
mikazuki kogitsunemaru
Xem chi tiết
Biokgnbnb
Xem chi tiết
Đinh Thị Thùy Linh
Xem chi tiết
Đỗ Đức Tuyển
Xem chi tiết
Vương Khánh Hưng
Xem chi tiết
Trần Sơn Tùng
Xem chi tiết