chứng tỏ rằng :
a) nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 . Chứng minh tổng quát .
b) nếu 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Chứng tỏ rằng trong 3 số nguyên liên tiếp tồn tại duy nhất một số chia hết cho 3
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
chứng tỏ rằng:
a) tổng 3 số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng bốn số tự nhiên liên tiếp là 1 số không chia hết cho 4
1) Chứng tỏ rằng :(17^n+1)(17^n+2)chia hết cho 3 với mỗi n thuộc N
2)Chứng tỏ rằng : (9^m+9)(9^m+2)chia hết cho 5 với mỗi m thuộc N
Chứng tỏ rằng : Tổng của ba số nguyên liên tiếp chia hết cho 6
Cho \(A=3+3^2+3^3+...+3^{2018}+3^{2019}\)
a ) Chứng minh rằng A chia hết cho 13
b ) Chứng tỏ rằng A không là bình phương của một số tự nhiên
chứng tỏ rằng: Trong 4 số tự nhiên liên tiếp, có một số chia hết cho 4?