Chứng tỏ rằng:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}< 1\)
CHỨNG TỎ RẰNG:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}>1\)
1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)
2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)
3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:
Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản
b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)
4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)
5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên
6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản
7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)
8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)
9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)
10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau
Chứng tỏ rằng:
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\)
Chứng tỏ rằng : \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+..+\frac{1}{17}< 2\)
Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)
\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+....+\frac{1}{98}+\frac{1}{99}\)
mấy bn ơi giải giúp mik nhak
cho tổng \(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{99}+\frac{1}{100}\) . Chứng tỏ rằng A>1
a)Cho S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2012!}.\) Chứng minh rằng S< 2
b)Chứng minh rằng :\(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+\frac{99}{100!}< \frac{1}{9!}\)
Ai làm nhanh mk l*** cho nhé !
tổng \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{10}\) bằng phân số \(\frac{a}{b}\) chứng tỏ rằng a chia hết cho 13