S = 1/2+1/2.3+1/3.4 +... +1/9/10
S =1/2+1/2-1/3+1/3+1/4+...+1/9-1/10
S =1-10
S =9/10
Do 9/10<1
=>S<1
S=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-(1/2-1/2)-(1/3-1/3)-(1/4-1/4)-...-(1/9-1/9)-1/10
=1-1/10<1
Vậy S<1
Ta có
\(S=\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)
\(S=1-\frac{1}{10}<1\)(ĐFCM)
s=1/1.2+1/2.3+1/3.4+.........+1/9.10
s=1-1/2+1/2-1/3+.............+1/9-1/10
s=1-1/10<1
=>s<1
h mk nhe