gọi d là ƯC(2n+1; 3n+2) (1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow6n+3-6n-4⋮d\)
\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d=\pm1\) (2)
\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)
=> 2n+1/3n+2 là phân số tối giản