Gọi d là ƯCLN của n, n+1
=>n:d;n+1;d
=>(n+1)-n;d
=>1;d
=>n/n+1 là phân số tối giản
Gọi d là ƯCLN của n, n+1
=>n:d;n+1;d
=>(n+1)-n;d
=>1;d
=>n/n+1 là phân số tối giản
Cho phân số : A = \(\frac{n+1}{n+a}\) ( n thuộc Z , n khác 3 )
a) Tìm n để a có giá trị nguyên
b) Tìm n để A là phân số tối giản
Tí nữa mk phải nộp rồi các bn làm nhanh lên nhé
Ai làm nhanh và đúng nhất mk sẽ tick cho
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
1.chứng tỏ rằng với mọi số nguyên n, các phân số sau đây là phân số tối giản :
\(\frac{15n+1}{30n+1}\)
a)b)\(\frac{n^3+2n}{n^4+3n^2+1}\)
2.Tìm tất cả các số nguyên để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
3.Tìm phân số \(\frac{a}{a.b}\)biết rằng phân số đó bằng phân số \(\frac{1}{6.a}\)
4.Chứng tỏ rằng nếu phân số \(\frac{5n^2+1}{6}\)là số tự nhiên với n thuộc \(ℕ\)thì cả phân số \(\frac{n}{2}\)và\(\frac{n}{3}\)là các phân số tối giản
Ai làm đúng cả 4 bài mk tích cho nhé !!!
Chứng tỏ rằng nếu phân số \(A=\frac{{5n^2+1}}{6}\) là số tự nhiên thì các phân số \(\frac{{n}}{{2}}\) và \(\frac{{n}}{{3}}\) là các phân số tối giản.
Làm giúp mk nha, ai lm đúng mk tick cho nha!
chứng tỏ rằng mọi phân số có dạng \(\frac{n}{n+1}\)(vơi n thuộc N, n khác 0) đều là phân số tối giản
Giải đúng kb lun
Chứng tỏ rằng mọi phân số có dạng n +1 / 2n + 3 ( n thuộc Z ) đều là phân số tối giản.
chứng tỏ rằng mọi phân số có dạng \(\frac{n}{n+1}\) ( với n thuộc N, n bằng 0) đều là phân số tối giản)
chứng tỏ rằng mọi phân số có dạng n+2018/n+2019 [ n thuộc N ] đều là phân số tối giản