Chứng tỏ rằng ; B= \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-....-\frac{1}{2004^2}\)>\(\frac{1}{2004}\)
Chứng tỏ rằng :\(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
Chứng minh rằng B = 1-1/22-1/32-1/42-...-1/20042 > 1/2004
Chứng minh rằng \(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
Chứng tỏ rằng ;S=\(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)<0,2
chứng minh rằng tổng S= 1- 1/22- 1/32- 1/42-...-1/20042> 1/2004
1. C/m rằng
S = 1/2^2 - 1/2^4 + 1/2^6 - ... + 1/2^4n-2 - 1/2^4n + ... + 1/2^2002 - 1/2^2004 < 0,2
2. C/m rằng
B = 1 - 1/2^2 - 1/3^2 - 1/4^2 - ... - 1/2004^2 > 1/2004
Chứng tỏ rằng:1-1/2^2-1/3^2-1/3^2-...-1/2004^2
chứng minh rằng :\(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+.........+\frac{2004}{4^{2004}}