Chứng tỏ rằng
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng tỏ rằng
a)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)
b)\(4+2^2+2^3+2^4+.....+2^{10}=2^{11}.\)
Chứng tỏ rằng: \(\frac{49}{100}< S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)<1
Chứng tỏ rằng:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
Chứng tỏ rằng
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
Chứng tỏ rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+..........\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+............\frac{99}{100}}\)=2
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Đề bài: Chứng tỏ rằng (trên)
Cho A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\).Chứng tỏ \(\frac{7}{12}< A< \frac{5}{6}\)
Chứng tỏ: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)