\(A=2^2+2^4+2^6+...+2^{18}+2^{20}\)
<=>\(A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...\left(2^{18}+2^{20}\right)\)
<=>\(A=2\left(2+2^3\right)+2^5\left(2+2^3\right)+...+2^{17}\left(2+2^3\right)\)
<=>\(A=2.10+2^5.10+...+2^{17}.10\)
<=>\(A=10\left(2+2^5+...+2^{17}\right)\) chia hết cho 10
=> A có tận cùng bằng 0 (đpcm)